Knowledge Extraction from Mobility Data

Marco Mamei
Lots of Pervasive Devices and Web services producing data about us!
WHAT IS PERSONAS?
Personas is a component of the Metapathologies exhibit recently on display at the MIT Museum by the Social Media Group from the MIT Media Lab. (Please contact us if you want to show it next!). It uses sophisticated natural language processing and the Internet to create a data portrait of one's aggregated online identity. In short, Personas shows how the Internet sees you.

HOW DOES IT WORK?
Enter your name, and Personas scours the web for information and attempts to characterize the person - to fit them to a predetermined set of categories that an algorithmic process created from a massive corpus of data. The computational process is visualized with each stage of the analysis, finally resulting in the presentation of a seemingly authoritative personal profile.

PHILOSOPHY
In a world where fortunes are sought through data-mining vast information repositories, the computer is our indispensable but far from infallible assistant. Personas demonstrates the computer’s uncanny insights and its inadvertent errors, such as the mischaracterizations caused by the inability to separate data from multiple owners of the same name. It is meant for the viewer to reflect on our current and future world, where digital histories are as important if not more important than oral histories, and computational methods of condensing our digital traces are opaque and socially ignorant.
Copenaghen Wheel
Outline

- Mobility Data and Applications
 - Long-term mobility data
 - The whereabouts diary
 - Routine extraction from data
 - Short-term mobility data
 - POI discovery from Flickr photo stream
 - Sport city dynamics from Nokia Sport Tracker
- Future directions
Mobility Data

- Mobility data is one of the first example of data from pervasive technology going mainstream.
- It is a first link between the Web and the physical world.
- The number and availability of whereabouts data is rapidly increasing...
 - Google Latitude
 - Yahoo Fire Eagle / Friends on Fire
 - FourSquares
 - Facebook Places
 - Gowalla
 - Geotagged photo (Flickr, Picasa)
 - Geotagged tweets
Applications

• The number of applications that can take advantage of such data is huge

• Maps and navigation
• Location-based search
• Location-based personalized searches
• Location-based social networks

• Novel application rely on the fact that mobility data is a mean to gather information about users and their environment
User-centered Applications

- **Pervasive Advertisement.** An application could show commercials to the user that are personalized on the basis of the diary.

- **Tourists recommendations.** You like museums, the application recommends other similar places.

- **Personalized Navigation.** Navigation routes with the goal of reducing route complexity and cognitive burden.

- **Life Logging, Life Blogging**
Environment-centered Applications

- **Identify places and POI.** “Which are the most crowded pubs on Saturday night?”, “Which are the restaurants visited by people living in my neighborhood?”, etc. The results can be used to retrieve and recommend Web content.

- **Identify events.** If a large number of people visit a specific location in Barcelona, say Camp Nou, on the same day, we may infer that there is an important event, such as a concert or a soccer game, happening at that location.

- **Urban Planning.** Mobility data may be used to inform how businesses or infrastructure are distributed across the city, so as to foster their placement (and opening time) where they are most required and would be most useful.

- **Disaster recovery scenarios**, the actual distribution of people at the time of the disaster (e.g., earthquake) could be a critical asset to organize a contingency plan and prioritize resources. An analysis and prediction of where people are in the city at certain times of the day and year can be combined with locations of hospitals, doctors and transportation.
Theoretical Challenges

- Making sense of data
 - How to code personalized advertisement?
Theoretical Challenges

- Making sense of data
 - What are the POI?
Theoretical Challenges

- So as to provide usable knowledge to applications

Tempo passato a casa
Via Giovanni Guareschi, 41125 Modena MO, Italia
18 hours last week.
31 hours a week on average.

Tempo trascorso fuori
Via Giovanni Amendola, 42122 Reggio nell'Emilia RE, Italia
18 hours last week.
38 hours a week on average.
Practical Challenges

- Get access to dataset
- Get access to ground truth information

- **Long term mobility.** Tracking a user 24 by 7
 - Difficult to get large dataset
 - Strong privacy issues
 - Geared toward user-centered applications
 - *Example.* Google Latitude Data.

- **Short term mobility.** Tracking a user during specific activities (e.g., taking a picture)
 - Easier to get large dataset (but it is never large enough)
 - Hard to get groundtruth data
 - Geared toward environment-centered applications
 - *Example.* Flickr photos
Privacy

We’re in a narrow window in which people are using Google latitude, but haven’t learned the habit of turning it off when they’re doing something discreetly.

I wrote an app to log friends’ locations and work out addresses and business names.

<table>
<thead>
<tr>
<th>TIME</th>
<th>MEgan</th>
<th>ROBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM</td>
<td>HOME</td>
<td>HOME</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>EASTVIEW ADULT TOY STORE</td>
<td>HOME</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>HOME</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>LAKETOWN SEX TOY SHOP</td>
<td>HOME</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>FRY’S ELECTRONICS</td>
<td>HOME</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>ED’S POWER TOOL EMPORIUM</td>
<td>SUBWAY</td>
</tr>
<tr>
<td>3:30 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM</td>
<td>HOME</td>
<td>SUBWAY</td>
</tr>
<tr>
<td>4:10 PM</td>
<td>HOSPITAL BURN WARD</td>
<td></td>
</tr>
</tbody>
</table>
Four Exemplary Researches

To show possible approaches to tackle the above challenges both in the long and in the short scale
1. The Whereabouts Diary

Long-term tracking of GPS traces
What is it?

- The *whereabouts diary* is an application, running on a GPS-equipped handheld device that records the list of relevant places visited by the user. The diary runs autonomously without requiring user’s interactions and is able to classify *semantically* the places being visited in an unsupervised way.

- The places we go can reveal something about us, and can be used as a surrogate or a complement to form a better user profile.
 - For example, a matchmaking application could infer that two persons are compatible given the fact that they visit almost the same places.
 - If the places are tagged semantically (e.g., work, home, pub, etc.) the application could infer more advanced relationships among the persons. For example, two persons visiting the same “work” place could be marked as colleagues, while persons visiting the same “home” place could be marked as relatives.
Creating the Diary

- The construction of the diary is an incremental process

- Starting from the log of the GPS readings (or of other kind of localization devices), it is possible to run segmentation and clustering algorithms to infer the places where the user has been
Diary based on GPS coordinates

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Latitude</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11°16'43.17"E</td>
<td>48° 5'11.75"N</td>
<td>Sept. 20, 2010, 8:35am-10:45am</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Diary based on addresses

- Using inverse geocoding services it is possible to identify the addresses associated to the identified places.

<table>
<thead>
<tr>
<th>Address</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1021 Budapest, Pálos utca 2, Hungary</td>
<td>Sept. 20, 2010, 8:35am-10:45am</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

- In general, because of errors in GPS readings multiple addresses are retrieved....
Diary based on places

- The diary can look for a particular address in yellow and white pages services to identify what is in a particular address.

<table>
<thead>
<tr>
<th>Place</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa Hotels & Congress Center</td>
<td>Sept. 20, 2010, 8:35am-10:45am</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Moreover, the diary can mine the Web looking for what is happening in that place at that time.

<table>
<thead>
<tr>
<th>Place</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perada Assyst Summer School 2010</td>
<td>Sept. 20, 2010, 8:35am-10:45am</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Diary based on personalized places

- If the user activities are profiled in some way (e.g., the diary may know a priori that the user tends to stay at home at night), then the diary application can give labels to places by looking at the temporal patterns in which places are visited. For example, the place most visited at night during weekdays can be meaningfully labeled as “Home”.

<table>
<thead>
<tr>
<th>Place</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working place</td>
<td>Sept. 20, 2007, 8:35am-10:45am</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- In its final form the diary represents a powerful source of context information allowing to extrapolate user’s habits, preferences and routine behavior.
This is how the Whereabouts Diary should work....

Let’s see our implementation...
Diary based on GPS coordinates

- the GPS signal is lost for at least T seconds and it is re-acquired later on at a distance of less than L meters from where it was lost. This reflects the situation in which a user enters a building and leaves it after some time.
 - Some empirical evaluations let us to set $T = 20$ minutes, $L = 20$ meters.
 - The constraint on time is important to wash out GPS signal glitches,
 - the constraint on space is useful to avoid those situation in which the GPS has been shut down and the user moves away.

- The GPS readings over a time window of W seconds are clustered within a radius of R meters from each other. This reflects the situation in which the user stays for a long time in a place like a park or a square.
 - Some empirical evaluations let us to set $W = 20$ minutes, $R = 100$ meters.
Experiments Set up

- We collected our own GPS traces for 3 weeks as we went about our normal lives.
 - Each member carried a PDA connected with a Bluetooth GPS reader and running the Whereabouts Diary J2ME application.
 - GPS signal has been acquired at 0.1Hz and processed on the fly by the handheld device. Overall, 25 places were identified as relevant.
 - Ground-truth information about the places where we have been, were recorded.
GPS Performance

- The algorithm is correct in 84.7% of the cases (detected place is close (< 20 m) to the ground-truth data.

![Incorrect Results Breakdown](chart)

- **Wrong**: the user is in a place, but the diary reports he is in a different place.
- **False Negative**: the user is in a place, but the diary reports he is moving.
- **False Positive**: the user is moving, but the diary reports he is in a place.

- The high-percentage of false negative results is due to the fact sometimes the GPS takes a long time before acquiring the signal. Thus, it can happen that a user leaves a building, and the trace of the GPS is acquired only when he is already far away.
GPS Performances
Diary based on addresses

- We developed a “reverse” geocoding for our region, on the basis of maps available from a commercial navigator software.
- Street numbers are evenly spread on the street length.
- The coordinates are mapped to the closer map entry (i.e., address) being available.
Reverse Geocoding Performance

- The address of almost half of the places can be retrieved uniquely (this is the case of large buildings – like the departments of our university).
- Some places produce more than 10 associated addresses. This is the case of small buildings in the center of the city.
- **NOTE.** Those distributions are based on the 25 identified places, thus they are not very stable...
Diary based on Places

- We screen-scraped information coming from a widely used online white-pages service (www.paginebianche.it) in our region allowing to query for who is at a given address.
- Each geocoded address belonging to a given place (as provided by the previous step) is looked up in the white-pages and the corresponding business is retrieved.
Business Search Performance

- The actual place can be retrieved in only 40% of the cases. Moreover, the number of businesses being retrieved is almost independent of whether the correct place has been found or not. This is either due to localization or white-pages errors.
Diary based on Personalized Places

- For each place being identified, the diary creates a Bayesian network to analyze the temporal pattern in which the place has been visited by the user.

<table>
<thead>
<tr>
<th>time</th>
<th>11pm-6am</th>
<th>7am</th>
<th>8am</th>
<th>9am-1pm</th>
<th>2pm-5pm</th>
<th>6pm-7pm</th>
<th>8pm</th>
<th>9pm</th>
<th>10pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{happens}) = \text{true}$</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Performance of the Bayesian Networks

- Overall, our approach classifies the places correctly in 64% of the cases.
- In order to better analyze the results we tried to assess the confidence of the diary in its own classification – most probable estimate (MPE). To this end, we compute the information entropy of the resulting distributions.
 - The lower the entropy, the more the system is confident about the MPE (i.e., the distribution peaks on the MPE value).

![Entropy Analysis Chart](chart.png)
Discussion

• In the end, accuracy will be the key measure in which the diary will be evaluated. If the diary is wrong, the applications that use it risk being rendered useless.
 – Other kind of sensing devices and algorithms could be employed to extract more information about the place (e.g., credit card transaction record). Moreover, some GPS clustering techniques that have been used in some recent works could improve the performance of our implementation.

• It is important to evaluate the diary on real applications to see if its accuracy is enough to effectively support that application.
Integration with CYC Commonsense

- **Commonsense data** could be exploited to effectively discriminate among several candidate places. For example, if a person went to a restaurant at noon, it is very unlikely that they will go to another restaurant at 2pm.

- **The CYC Knowledge Base (KB)** contains over a million human-defined assertions, rules or common sense ideas. These are formulated in the language CycL, which is based on predicate calculus.

- **The Inference Engine** allows to query the KB. It performs general logical deduction by using best-first search using proprietary heuristics.
CYC Result
(preliminary)
2. Classification of Whereabouts Patterns from Large-Scale Mobility Data

Long-term tracking of GSM traces
Beyond the diary

- Even in the most complete form, the diary represents user’s daily life in a rather episodic way.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>Sept. 20, 2007, 00:35am-08:45am</td>
</tr>
<tr>
<td>work</td>
<td>Sept. 20, 2007, 09:35am-06:45pm</td>
</tr>
<tr>
<td>home</td>
<td>Sept. 20, 2007, 09:35pm-11:45pm</td>
</tr>
</tbody>
</table>

- It would be interesting to identify routine and recurrent behaviors from such a log.
- Describe the above day as “day at work and pub with friends afterwards”
Routine Extraction... LDA

<table>
<thead>
<tr>
<th>Place</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>Sept. 20, 2007, 00:35am-08:45am</td>
</tr>
<tr>
<td>work</td>
<td>Sept. 20, 2007, 09:35am-06:45pm</td>
</tr>
<tr>
<td>pub</td>
<td>Sept. 20, 2007, 07:35pm-08:45am</td>
</tr>
<tr>
<td>home</td>
<td>Sept. 20, 2007, 09:35pm-11:45pm</td>
</tr>
</tbody>
</table>

...

- morning
- afternoon
- evening
- night

HHH1, HHH1, HHW2, WWW2,...
LDA

- Probabilistic model clustering words (w) in topics (z).
- Words like HHH1, WWW2, WWW3, HHH4 will be clustered together in a topic Z expressing “normal working routine”

(Farrahi et al., 2009)
Problem Identification

<table>
<thead>
<tr>
<th>PRO</th>
<th>CONTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical pattern analysis</td>
<td>Predefined number of topics</td>
</tr>
<tr>
<td>Summarization</td>
<td>Hard to interpret</td>
</tr>
<tr>
<td>Subtopic discovery</td>
<td></td>
</tr>
</tbody>
</table>
Problem Identification

Automatic but hard to make sense

Human generated labels

Make sense, but cannot scale up.

Use top words
Research questions

can we identify patterns from mobility data?
can we automatically generate understandable labels for topics?
can we automatically attach labels to such behavioral patterns?
Applications of labeling patterns

create an entry in the user blog

communicate compact routines affecting city-life

make patterns readily understandable and usable in applications
Our method

CANDIDATE LABELS POOL
(E.G. “WORK 9-18”, “HOME 12-14”, ETC.)

LABEL PATTERN: e.g. “WORK 9-18”

REPRESENTATIONS

MULTINOMIAL WORD DISTRIBUTIONS

USER-GENERATED BEHAVIORAL PATTERNS

KULLBACK-LEIBLER DIVERGENCE

hours
d
ays

WWW-4 0.5598
WWW-5 0.4978
HHH-1 0.0060
NNN-2 0.0072
EEE-7 0.0011
EEE-8 0.0010

WWW-4 0.0003
WWW-5 0.0003
HHH-1 0.0001
NNN-2 0.0001
EEE-7 0.0001
EEE-8 0.0001
Experiments

REALITY MINING DATASET: 36 INDIVIDUALS, 121 DAYS

USER-GENERATED

MULTINOMIAL DISTRIBUTIONS

DAYS RECONSTRUCTION

CLASSIFICATION
Experiments
Google Latitude
Place Discovery

Automatic check-in!
LDA Topics
Applications

[Image of a Facebook profile and a map showing commute routes between Home, Work, Gym, and Work again.]
3. Automatic Analysis of Geotagged Photos for Intelligent Tourist Services

Short-term tracking of Flickr data
Applications Scenario

- Large database of geolocalized data is getting available. They implicitly reveal user locations... Flickr, Twitter, Foursquares, Gwalla, Facebook Places, etc.

- From the extraction of such information we foresee services to automatically aggregate and classify events, to develop model about human/urban behaviors.

- In such context, a lot of applications and services could be developed. In particular, we concentrated in the development of a touristic service for automatic classification and recommendations from Geotagged photos able to take advantage of FRESH, UP to DATE, FREELY AVAILABLE information from users.
Flicker Community

London: users upload around 180,000 pictures/year

Pictures over London:
zone 1 and 2 during 2009

Zoom over Thames. ~ 50,000 pictures
Photo Clustering

- Pictures are aggregated around contiguous cells of 100x100 meters
- For each cell we count the number of pictures taken from distinct authors.
- Considering the whole number leads to noise (consider spamming user, misplaced pictures, a user taking picture to is new car, etc...)
Photo Clustering (II)

- We order cells from the most “Active” one to the minor one.
- For each cell we build a label searching for recursive terms in picture titles or descriptions.

Pictures of distinct users in a cell:
- Between 1 and 15
- Between 15 and 25
- Between 25 and 50
- Over 50
Cell selection through Otzu algorithm

• For each possible threshold (i.e., minimum number of individual photos to mark the cell as relevant), we compute the intra-class variance between relevant and not-relevant cells (see graph on the right).

• The threshold minimizing intra-class variance is the optimal one. The algorithms consists thus in computing, for each threshold T:

$$\sigma^2(T) = \omega_1(T) \cdot \sigma^2_1(T) + \omega_2(T) \cdot \sigma^2_2(T)$$

Where ω_1 are the probabilities of the two classes, and σ^2_1 are the variances of these classes
Selected cells after Otzu filtering
Agent and Pervasive Group – www.agentgroup.ing.unimore.it

Results Comparison

<table>
<thead>
<tr>
<th>Berlin</th>
<th>London</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brandenburger Tor</td>
<td>Big Ben</td>
<td>Notre Dame</td>
</tr>
<tr>
<td>2 Reichstag Dome</td>
<td>Trafalgar Square</td>
<td>De Triomphe</td>
</tr>
<tr>
<td>3 Holocaust Memorial</td>
<td>London Eye</td>
<td>Sacre Coeur</td>
</tr>
<tr>
<td>4 Sony Center</td>
<td>Piccadilly Circus</td>
<td>Eiffel Tower</td>
</tr>
<tr>
<td>5 Fernsehturm Berlin</td>
<td>Millenium Bridge</td>
<td>Le Louvre</td>
</tr>
<tr>
<td>6 Berliner Dom</td>
<td>British Museum</td>
<td>Louvre Museum</td>
</tr>
<tr>
<td>7 Potsdamer Platz</td>
<td>Buckingham Palace</td>
<td>Centre Pompidou</td>
</tr>
<tr>
<td>8 Mosak Jacket</td>
<td>History Museum</td>
<td>Dead Eyes</td>
</tr>
<tr>
<td>9 Checkpoint Charlie</td>
<td>Paulos Cathedral</td>
<td>Eiffel Tour</td>
</tr>
<tr>
<td>10 Rotes Rathaus</td>
<td>Tower Bridge</td>
<td>Torasse des Feuillants</td>
</tr>
<tr>
<td>11 Humboldt University</td>
<td>suggestion The Tower</td>
<td>Saint Eustache</td>
</tr>
<tr>
<td>12 Neue Wache</td>
<td>City Hall</td>
<td>Place de l'Hôtel-de-Ville</td>
</tr>
<tr>
<td>13 Victory Column</td>
<td>Covent Garden</td>
<td>Palais Garnier</td>
</tr>
<tr>
<td>14 Altes Museum</td>
<td>Westminster Abbey</td>
<td>Sainte Chapelle</td>
</tr>
<tr>
<td>15 Weisse Kreuze</td>
<td>Mary Axe</td>
<td>Pont Alexandre</td>
</tr>
<tr>
<td>16 Berlin Hauptbahnhof</td>
<td>Tate Modern</td>
<td>suggestion Rue St</td>
</tr>
<tr>
<td>17 Berlin Alexanderplatz</td>
<td>Southwark Cathedral</td>
<td>Tour Eiffel</td>
</tr>
<tr>
<td>18 Christmas Market</td>
<td>St Paulos</td>
<td>suggestion Palais Royale</td>
</tr>
<tr>
<td>19 Pergamon Museum</td>
<td>China Town</td>
<td>The Pantheon</td>
</tr>
<tr>
<td>20 Eine Aktion</td>
<td>South Bank</td>
<td>Les Tuiieries</td>
</tr>
<tr>
<td>21 Hackescher Markt</td>
<td>Globe Theatre</td>
<td>Looking Back</td>
</tr>
<tr>
<td>22 World Clock</td>
<td>Millennium Bridge</td>
<td>Moulin Rouge</td>
</tr>
<tr>
<td>23 Big Brother</td>
<td>Leadenhall Market</td>
<td>Petit Palais</td>
</tr>
<tr>
<td>24 Engels Forum</td>
<td>Camden Lock</td>
<td>Avenue du Général</td>
</tr>
<tr>
<td>25 Carnaby Street</td>
<td>Brick Lane</td>
<td>Lemonnier</td>
</tr>
<tr>
<td>26 Brick Lane</td>
<td>Leicester Square</td>
<td>Place Louis Lépine</td>
</tr>
<tr>
<td>27 Leicester Square</td>
<td></td>
<td>Pont Neuf</td>
</tr>
</tbody>
</table>
“Making Recommendations”

based on collaborative filtering (I)

The goal is to use the information on where a user has been before (e.g., Franco in London) to recommend places he might want to visit in another city (e.g., Paris).

To perform this task, we adopted an instance-based Pearson collaborative filtering, also used by on-line shops (e.g., Amazon) to recommend items to users and it finds a natural application in personalized travel guides, where the attractions being proposed are tuned to the specific interests of a given user.

To test the performance of collaborative filtering in this scenario for each user in our dataset that visited at least two cities, we artificially removed the information on where she/he has been in a “test”-city and use the information on where she/he has been before in other cities to recommend interesting places in the “test”-city.
“Making Recommendations”

based on collaborative filtering (II)

In a first set of experiments, we computed the percent of correct recommendations on the basis of how many places the user actually visited in the test city:
- if the user visits only few places, the algorithm results not really effective in pin-pointing (recommending) exactly those peculiar locations.
- if the user visits a lot of places, several of our recommendations match those places actually visited.

In a second set of experiments, we performed a similar kind of analysis, but on the x-axis there is the number of places visited before, by the user:
- more places the user has visited before, better recommendations could be provided
- good results comprise also those users to which only few spots have to be guessed.
4. Discovering large-scale city dynamics through Nokia Sports Tracker online repository of GPS tracks

Short term on Nokia Sport Tracker Data
Main Idea

- Aggregate lots of GPS traces annotated with the activity the user was performing at that time to discover areas in the city where that activity is performed most.

- Also temporal analysis to discover the temporal patterns with which a given area is used.

- **Nokia Sport Tracker dataset.** Large (90GB) dataset of sport-annotated GPS activities.
 - Computational problems arise... need for spatial indices, and pre-computation...
Nokia Sport Tracker
Global Temporal Analysis

- Simple statistical analyses on Nokia Sports Tracker dataset allow to highlight differences across cities.
- We computed the minimum, maximum and average of the number of users of the city on a monthly base and on an hourly base.
Finer Grain Analysis

- Apply statistical techniques to smooth individual traces in the city concerning specific activities, in order to highlight patterns and areas of interest.

- **Kernel density estimation** is a non-parametric way of estimating the probability density function of a random variable. Given some data about a sample of a population, kernel density estimation makes it possible to extrapolate the data to the entire population.

\[
f_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{d(x,t_i)}{h}\right)
\]
KDE Parameters

- **Kernel Function (K)**
 - The kernel function, K, does not affect results significantly, so we used a "traditional" Gaussian kernel. The Gaussian kernel is defined as:
 \[
 K \left(\frac{x - x_i}{h} \right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}
 \]

- **Bandwidth (h)**
 - The bandwidth, h, controls the smoothness of the density estimate.
 - In the case of a normal distributed kernel, h represents the standard deviation of the normal distribution. The contribution of a track to the density of a point x sharply decreases as the distance from the track increases (the **68-95-99.7 rule states that for a normal distribution**, nearly all values lie within 3 standard deviations of the mean).
 - h as the average minimum separation between tracks implies that relative clusters of tracks are "collapsed" in a single peak of the density function, while the density of points farther away from all the tracks will be close to 0.
KDE Parameters

\[h = \frac{1}{N} \sum_{i=1}^{N} \min d(t_i, t_j) \quad j = 1, \ldots, N, \quad i \neq j \]
Results

www.mysportpals.com
Validation

- Ok, cool... but can you validate your results?
- Difficult problem groundtruth missing...
- Compare with other dataset, looking for correlation.
- In the cycling case, we can compare obtained KDE with KDE obtained using bike routes of the city. Pearson correlation between the two distributions.

<table>
<thead>
<tr>
<th>City</th>
<th>Bike-friendly rank</th>
<th>Bike-route index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>2</td>
<td>0.63</td>
</tr>
<tr>
<td>Berlin</td>
<td>3</td>
<td>0.98</td>
</tr>
<tr>
<td>Barcelona</td>
<td>4</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Conclusions
Future Works

- Better ways of validating results, comparison with other datasets
- Information obtained by combining different data sources
 - Mobility and yellow pages

www.mrtyp.it

- A lot of ad hoc approaches... the line between principled research and hacking becomes rather thin...
 - General approaches to analyze and visualize whereabouts data
 - General approaches to extract features from mobile data

- Techniques being developed could give hints and insights on analyzing other data (e.g., user activity on the basis of body-worn sensors)
- Life logging.